DOFMaster
for Windows On-line Depth of Field Calculator DOFMaster for Mobile Devices On-line Depth of Field Table Hyperfocal Distance Chart Articles FAQ Recommended Books Support Contact Links Home As an Amazon Associate I earn from qualifying purchases. |
point is determined by sensitometric tests. The speed point is established using a step on a sensi-strip with a density of 0.10 above gross fog for ground pictorial film. The speed point of aerial film is established by using the step on a sensi-strip that has a density of 0.30 above gross fog. control chart. Neither effective film speed nor the ISO for ground pictorial film should be confused with equivalent. A PROCESS CONTROL CHART exposure. All films have a gross fog density, resulting from several factors that may include the following: several factors. However, when you choose to monitor more than one processing variable, you should construct the appropriate control chart or use a piece of graph paper that can be posted near the process. Figure 2-14 shows a typical family of control charts for a process. A family of control charts, such as this, will provide you with a wealth of information about the process. Also, all the information is in one place. representative of a normal "population" or set of circumstances of the process. The limit lines, therefore, should include between them, all points representing an unchanged or normal process. Limit lines can never be placed in such a manner that all data are included between them; there will always be deviations. Samples from a black-and-white process, for example, show a gamma average of 0.70. On a subsequent test, a sensitometric strip was found to have a gamma of 0.80. Obviously this process appears to have changed or is changing. Should the process be altered? The answer must consider the factor of probability. sampling appears outside one of the limit lines, indicating that the process is out of control, but the process is actually behaving normally and has not changed. This situation is known as the alpha risk. The reverse is also possible; it appears that the process is normal when actually it has changed or is changing. This is called a beta risk. These occurrences cannot be eliminated, but they can be reduced to the point One risk is usually more costly than the other, and the the mean when the alpha risk must be avoided. They are set close to the mean when the beta risk must be standard deviation above and below the mean, or ±3s. The alpha risk is approximately 3 in 1,000 for limits of ±3s. Before proceeding, it is necessary to define the following two terms: in a certain process the mean (average) Advanced Photography Course |
As an Amazon Associate I earn from qualifying purchases. |
WWW.DOFMASTER.COM
© 2006 Don Fleming. All rights reserved. |